Skip to content Skip to sidebar Skip to footer

VeBrain: A Unified Multimodal AI Framework for Visual Reasoning and Real-World Robotic Control

Bridging Perception and Action in Robotics Multimodal Large Language Models (MLLMs) hold promise for enabling machines, such as robotic arms and legged robots, to perceive their surroundings, interpret scenarios, and take meaningful actions. The integration of such intelligence into physical systems is advancing the field of robotics, pushing it toward autonomous machines that don’t just…

Read More

ByteDance Researchers Introduce DetailFlow: A 1D Coarse-to-Fine Autoregressive Framework for Faster, Token-Efficient Image Generation

Autoregressive image generation has been shaped by advances in sequential modeling, originally seen in natural language processing. This field focuses on generating images one token at a time, similar to how sentences are constructed in language models. The appeal of this approach lies in its ability to maintain structural coherence across the image while allowing…

Read More

Gemini 2.5’s native audio capabilities

Safety and responsibility We’ve proactively assessed potential risks throughout every stage of the development process for these native audio features, using what we’ve learned to inform our mitigation strategies. We validate these measures through rigorous internal and external safety evaluations, including comprehensive red teaming for responsible deployment. Additionally, all audio outputs from our models are…

Read More

University of Michigan Researchers Introduce OceanSim: A High-Performance GPU-Accelerated Underwater Simulator for Advanced Marine Robotics

Marine robotic platforms support various applications, including marine exploration, underwater infrastructure inspection, and ocean environment monitoring. While reliable perception systems enable robots to sense their surroundings, detect objects, and navigate complex underwater terrains independently, developing these systems presents unique difficulties compared to their terrestrial counterparts. Collecting real-world underwater data requires complex hardware, controlled experimental setups,…

Read More

Samsung Researchers Introduced ANSE (Active Noise Selection for Generation): A Model-Aware Framework for Improving Text-to-Video Diffusion Models through Attention-Based Uncertainty Estimation

Video generation models have become a core technology for creating dynamic content by transforming text prompts into high-quality video sequences. Diffusion models, in particular, have established themselves as a leading approach for this task. These models work by starting from random noise and iteratively refining it into realistic video frames. Text-to-video (T2V) models extend this…

Read More

This AI Paper Introduces an LLM+FOON Framework: A Graph-Validated Approach for Robotic Cooking Task Planning from Video Instructions

Robots are increasingly being developed for home environments, specifically to enable them to perform daily activities like cooking. These tasks involve a combination of visual interpretation, manipulation, and decision-making across a series of actions. Cooking, in particular, is complex for robots due to the diversity in utensils, varying visual perspectives, and frequent omissions of intermediate…

Read More